Nom:_____ ## Applying Knowledge Nuclear fission and fusion reactions Page 142 - 1. 3 ¹₀n, Fission **33** Ru - 2. € ²H, Fusion - 3. $^{80}_{32}$ Ge, Fission - 4. ¹₀n, Fusion - **5.** $^{235}_{92}$ U, Fission - 6. $^{1}_{0}$ n, Fusion - 7. 46 Pd, Fission - 8. 127 I, Fission - 9. 3¹₀n, Fission - **10.** $^{239}_{94}$ Pu, Fission Nom:_____ | | Nuclear fission | Nuclear fusion | |--|---|--| | Give a description of the process. | one heavy unstable
nucleus splits up into
lighter nuclei | two small nuclei
combine to form one
large nucleus | | What is produced as a result of this nuclear process? | huge amounts of
energy; neutrons;
radioactive isotopes | huge amounts of
energy; neutron(s) | | Are the products radioactive? | products are often radioactive | products are not often radioactive | | What is
needed for
this nuclear
reaction to
occur? | a neutron | high temperature and
sufficient pressure | | Where does
this process
occur? | induced fission in
nuclear fission
reactors; atom
bombs | Sun; stars; hydrogen
bombs | | Give an example of a nuclear equation. | answers may vary
${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{36}^{92}Kr + {}_{56}^{141}Ba + 3{}_{0}^{1}n + energy$ | answers may vary ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He +$ ${}_{0}^{1}n + energy$ |